Representations for Embodied FMs

Animesh Garg

Professor of AI Robotics Georgia Tech

1950s "Al" The Dartmouth Al Project

The Computing Stack Digital Al

General-Purpose Applications Ease of Use

Platform-Agnostic OS Modular Utilities

Driver

App

SO

Hardware-Specific Drivers Optimize Performance

The Computing Stack Physical Al

The Computing Stack

Physical AI

Internet Data Language, Image, Video \$, Very Diverse

Natural Interaction Interface Ease of Use

App

S

0

Driver

Synthetic Data Simulation

\$\$\$\$, Limited Diversity

Real World Data

Teleoperation

للبين	

Platform-Agnostic Planning Modular Tool-Use

\$\$, Engineered Designs

Hardware-Specific Skills Optimize for Morphology

The Computing Stack Physical Al

Planning with LLMs

Learning Planning Domains

Using Agentic Frameworks with Verifiers for correctness

Automated Iterative completion of Domain Specification

Hardware-Specific Skills Optimize for Morphology

Natural Interaction Interface Ease of Use

Platform-Agnostic Planning Modular Tool-Use

Driver

App

S

0

CLIMB

Language-Guided Continual Learning for Task Planning with Iterative Model Building

Walker Byrnes, Miroslav Bogdanovic, Avi Balakirsky, Stephen Balakirsky, Animesh Garg

CLIMB Objectives

Given a domain description and task in **natural language**, learn a world model which represents domain state constraints through autonomous interaction with environment

Inputs:

- Domain Description
- Logical Action set
- Tasks to complete

Outputs:

- World representation encoding task requirements
- Completed tasks in curriculum

Prior Efforts

- InterPreT grounds language instructions in Problem Domain Definition Language (PDDL)
 - Relies on human input for corrective actions
- Plan-Seq-Learn
 - Learns atomic skills to accomplish dexterous actions, sequenced with classical task planner

INTERPRET: Interactive Predicate Learning from Language Feedback for Generalizable Task Planning

> Muzhi Han¹, Yifeng Zhu², Song-Chun Zhu¹, Ying Nian Wu¹, Yuke Zhu² ¹University of California, Los Angeles, ²The University of Texas at Austin https://interpret-robot.github.io

Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks

CLIMB

Language-Guided Continual Learning for Task Planning with Iterative Model Building

Walker Byrnes^{1,2}, Miroslav Bogdanovic³, Avi Balakirsky⁴, Stephen Balakirsky², Animesh Garg^{1,3,5}

¹Georgia Institute of Technology, ²Georgia Tech Research Institute, ³University of Toronto, ⁴Ohio State University, ⁵Nvidia

Experiments

Three levels of fidelity: logical, simulated, and real

IsaacLab Blocks Simulation

Franka Arm

5cm blocks

Results – Logical Domain

- Compared to naïve LLM prompt based planning, CLIMB's planning structure increases 0-shot performance for some classes of problems
- With few-shot (N=5) re-prompting we can match or improve performance in all evaluated cases
- Reliant on accurate predicate grounding, which can be mitigated with few-shot syntax and semantic corrections

Dataset	LLM Plan	CLIMB 0-Shot	CLIMB Few-Shot
BLW	0.12	0.40	0.80
	(0.05, 0.20)	(0.28, 0.53)	(0.70, 0.90)
GRP	0.10	0.53	0.93
	(0.03, 0.18)	(0.42, 0.67)	(0.87, 0.98)
HVY	0.68	0.17	0.67
	(0.57, 0.80)	(0.08, 0.27)	(0.55, 0.78)

Predicate	Zero-Shot	With Syntax Fixing
on-table	0.95	1.00
on	0.25	0.45
holding	0.50	0.65
arm-empty	0.10	0.35
clear	0.60	0.80

Basic Stacking

30x

Pyramid Stacking

Results

Logical BlocksWorld Dataset

- Leveraging data from past instances improves overall success and reduces total rollouts required
- Once CLIMB obtains a complete domain, it can solve new problems zero-shot

Results

- Evaluation on curriculum of increasing complexity tasks
- CLIMB demonstrates understanding and incorporation of new world constraints and predicates with fewer rollouts than baseline

Note: All basic stack problems were successful on first rollout.

The Computing Stack Physical Al

Large Behavior Models

Natural Interaction Interface Ease of Use

Large Scale Imitation Learning

Learned Task Planning and replanning Behavior

Fine-Tune Generalists for better Specialists using RL

Platform-Agnostic Planning Modular Tool-Use

Hardware-Specific Skills Optimize for Morphology Driver

App

S

0

Policy Learning from Offline Datasets

Self-Supervised Skill Abstractions for Learning Continuous Control

Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen, Animesh Garg

Multi-Task Behavior Cloning Latent Variable Models

act

pervised

ons for Continuous Control

Multi-task Learning: QUEST

Multitask-IL LIBERO-90

Multitask IL: Relative improvement of 10.3% over next best baseline

Multi-Task Behavior Cloning Latent Variable Models

5-shot IL LIBERO-LONG

Multitask-IL LIBERO-90

Multitask IL: Relative improvement of 10.3% over next best baseline

5-shot IL: Relative improvement of 24% over next best baseline

Adapt3R

Unified 3D Scene Representation for Domain Transfer in Imitation Learning

Albert Wilcox, Mohamed Ghanem, Masoud Moghani

Motivation

- Robotics data is notoriously expensive,
- Collecting enough data to cover the full space of robotics deployment settings (all variations in scene, robot, etc) is proving to challenging

Generalization is often bounded Change of robot embodiment Change of camera pose

Prior Work - SE(3) Equivariance

- SE(3) equivariance (pink and place): NDFs, TaxPose, KeyPoint-ViL, RiEMann, etc
- EquivAct, EquiBot / Equivariant diffusion policy
- Difficult to scale to settings with several objects
- Completely incompatible with modern BC methods

Prior Work - 3D Diffusion Policy / iDP3

- 3D Diffusion Policy (DP3) and Improved 3D Diffusion Policy (iDP3) use colorless point clouds as a scene representation
- 3D Diffuser Actor lifts CLIP
- Omit semantic information or too slow to train and test
- Generalization to new camera poses is limited

Challenges

- DP3 uses a colorless point cloud and PointNet
- 3D diffuser actor cross attends between scene tokens and noised trajectory tokens
- GenDP requires hand-selected reference features

Adapt3R Overview

- Lift CLIP encodings into a 3D semantic point cloud
- Use attention pooling over the cloud to extract a single conditioning vector
- Use that vector as input for an arbitrary policy and train end-to-end

Adapt3R Overview

1. Convert to End-Effector Frame

Transform the point cloud from the robot base coordinate frame to the end effector's coordinate frame

2. Object Centric Foreground cropping Remove points far behind the end effector

3. CLIP-based down-sampling instead of Point Cloud based sub-sampling

4. Positional embedding for PC Transform the point cloud from from XYZ to sinusoidal positional encoding

Experiments - Multitask IL

Algorithm	LIBERO-90	MetaWorld
ACT + RGB	0.912	0.697
ACT + RGBD	0.742	0.655
ACT + DP3	0.759	0.402
ACT + iDP3	0.764	0.419
ACT + Adapt3R	0.916	0.876
DP + RGB	0.907	0.605
DP + RGBD	0.867	0.540
DP + DP3	0.703	0.446
DP + iDP3	0.661	0.405
3D Diffuser-Actor	0.837	-
DP + Adapt3R	0.899	0.866
BAKU + RGB	0.923	0.702
BAKU + RGBD	0.839	0.707
BAKU + DP3	0.712	0.414
BAKU + iDP3	0.742	0.460
BAKU + Adapt3R	0.931	0.869

Drop-in replacement for BC methods!

- Adapt3R achieves similar or better performance compared to baselines in all settings
- Notably, we achieve SOTA results on the LIBERO-90 benchmark
Experiments Robot Change

- We train only on the Franka Panda
- evaluate zero-shot on
 - UR5e
 - Kinova3
 - Kuka IIWA
- Adapt3R shows a strong improvement compared to most baselines in this experiment

Algorithm	UR5e	Kinova3	IIWA
ACT + RGB	0.594	0.667	0.557
ACT + RGBD	0.536	0.554	0.454
ACT + DP3	0.596	0.586	0.617
ACT + iDP3	0.571	0.517	0.548
ACT + Adapt3R	0.824	0.796	0.760
DP + RGB	0.564	0.545	0.433
DP + RGBD	0.478	0.457	0.361
DP + DP3	0.574	0.409	0.452
DP + iDP3	0.499	0.377	0.411
3D Diffuser-Actor	0.737	0.766	0.636
DP + Adapt3R	0.761	0.568	0.522
BAKU + RGB	0.427	0.457	0.346
BAKU + RGBD	0.411	0.393	0.368
BAKU + DP3	0.581	0.489	0.509
BAKU + iDP3	0.541	0.422	0.490
BAKU + Adapt3R	0.813	0.757	0.696

Experiments Camera Pose Change

- evaluate zero-shot on new camera poses
- Adapt3R shows a strong performance preservation across camera poses

Experiments Camera Pose Change

• We train only on the UR5

- evaluate zero-shot on new poses
- Adapt3R shows a strong robustness

AnyPlace

Learning Generalized Object Placement for Robot Manipulation

Yuchi(Allan) Zhao, Miroslav Bogdanovic, Chengyuan Luo, Steven Tohme, Kourosh Darvish, Alán Aspuru-Guzik, Florian Shkurti, Animesh Garg

Existing approaches are: Task-specific Limited generalization Predict a single solution

How to enable robots to place objects in a generalizable and robust manner?

AnyPlace Architecture

Zhao, Bogdanovic, Luo, Tohme, Darvish, Aspuru-Guzik, Shkurti, Garg. AnyPlace: Learning Generalized Object Placement for Robot Manipulation (2025)

AnyPlace Synthetic Dataset Generation

Zhao, Bogdanovic, Luo, Tohme, Darvish, Aspuru-Guzik, Shkurti, Garg. AnyPlace: Learning Generalized Object Placement for Robot Manipulation (2025)

"Insert the vial in the vialplate"

Insert vials into different holes on the vial plate

"Place the **lid** on the **pot**, then place the **pot** on the **stove**".

"Place the bottle in the drawer" "Place the bottle on the middle shelf" "Place the bottle on the top shelf"

OG-VLA

3D-Aware Vision Language Action Model via Orthographic Image Generation

Ishika Singh, Ankit Goyal, Stan Birchfield, Dieter Fox, Animesh Garg, Valts Blukis

Problem Statement

Pickup Object

Lift the bottle **30cm** from the ground

Close Drawer

Push the top left dresser entirely closed

Open Cabinet

Pull the **left** cabinet **half** open

Transfer Water

Pour **80%** of the liquid to the cup

Generalization

Novel objects

Novel environments

Prior Works struggle with Generalization

ARNOLD

PerAct (MT)	29.14	44.90
Novel Object	14.53	23.48
🚵 Novel Scene	19.00	34.37
Vovel State/Instr	4.58	6.80

scoop with basketball in stack cups put money place wine close box spatula in safe in rack misses the correct hoop confuses the cup with the distractor couldn't pick money fails due to an unseen drops the location to goes for a distractor can while stacking on top of an unseen textured rack, drops cube larger in size interact with instead of the ball to the other cup colored safe the box hood the wine bottle than in training time put in the hoop 50 change with respect to No Perturbation 25 R3M 0 MVP PerAct RVT -25

-50

-75

-100

8

VoxPoser

COLOSSEUM

Multi-Task Peract average across all Arnold benchmark tasks

Why? They are trained from scratch and overfit to their training data

What about VLAs?

Most use 2D single-view input.

Output space is actions vectors expressed as text tokens.

Not very efficient for learning tasks that are inherently 3D.

Perhaps we can leverage builtin priors used in 3D BC methods like RVT or Act3D for learning VLAs?

Our approach: OG-VLA

Generating actions on orthographic views

Results: Eval on Arnold (3D-manipulation)

Model	Pickup Object	Reorient Object	Open Drawer	Close Drawer	Open Cabinet	Close Cabinet	Pour Water	Transfer Water	Overall
6D-CLIPort	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8
-Novel Object	8.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
-Novel Scene	10.4	0.0	0.0	0.0	0.0	1.3	0.0	0.0	1.5
-Novel State	0.00	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.1
PerAct	$83.3~\pm 2.4$	$16.7~\pm~6.2$	$30.0~\pm~10.8$	31.7 ± 8.5	$\textbf{25.0} \pm 0.0$	$\textbf{30.0}~\pm~0.0$	36.7 ± 6.2	18.3 ± 2.4	34.0 ± 3.1
-Novel Object	$75.0~\pm~0.0$	3.3 ± 2.4	0.0 ± 0.0	23.3 ± 13.1	0.0 ± 0.0	0.0 ± 0.0	30.0 ± 4.1	1.7 ± 2.4	16.7 ± 2.6
-Novel Scene	75.0 ± 4.1	13.3 ± 2.4	13.3 ± 9.4	$30.0~\pm~{}^{14.1}$	$0.0~\pm$ 0.0	6.7 ± 2.4	26.7 ± 6.2	3.3 ± 2.4	$21.0~\pm 3.1$
-Novel State	$16.7~\pm 2.4$	1.7 \pm 2.4	$5.0~\pm 0.0$	$11.7~\pm 6.2$	$0.0~\pm~0.0$	$0.0~\pm~0.0$	$5.0~\pm 0.0$	$11.7~\pm 2.4$	$6.5~\pm 1.2$
OG-VLA@30k	86.7±2.9	15.0±8.7	38.3±2.9	51.7±2.9	$0.0 {\pm} 0.0$	16.7±2.9	25.0±5.0	16.7±7.6	31.2±2.9
-Novel Object	85.0±5.0	0.0 ± 0.0	1.7±2.9	55.0±13.2	1.7 ±2.9	5.0±5.0	18.3 ± 2.9	6.7 ± 7.6	21.7 ± 0.7
-Novel Scene	$70.0 {\pm} 2.9$	$1.7 {\pm} 2.8$	26.7 ± 11.5	36.7±5.8	1.7 ±2.9	$1.7 {\pm} 2.9$	16.7 ± 11.5	8.3 ± 2.9	20.8 ± 1.3
-Novel State	$0.0 {\pm}$ 0.0	13.3 ± 7.6	13.3 ± 2.9	$20.0{\scriptstyle \pm 0.0}$	$0.0 {\pm} 0.0$	$0.0 {\pm} 0.0$	8.3 ±7.6	13.3 ± 2.9	8.5 ± 1.9
OG-VLA@100k	88.3 ± 2.4	16.7 ± 9.4	48.3 ± 2.4	56.7 ± 2.4	6.7 ± 4.7	$23.3~\pm~16.5$	33.3 ± 6.2	28.3 ± 2.4	37.7 ± 0.6
-Novel Object	65.0 ± 8.2	15.0 ± 4.1	1.7 ± 2.4	58.3 ± 12.5	0.0 ± 0.0	5.0 ± 4.1	45.0 ± 8.2	8.3 ± 4.7	24.8 ± 1.2
-Novel Scene	75.0 ± 7.1	$13.3~\pm$ 8.5	31.7 ± 4.7	51.7 ± 2.4	1.7 ± 2.4	5.0 ± 4.1	26.7 ± 2.4	25.0 ± 7.1	28.8 ± 0.5
-Novel State	$0.0~\pm~0.0$	$13.3~\pm 2.4$	$25.0~\pm~7.1$	$15.0~\pm \text{4.1}$	$0.0~\pm~0.0$	$0.0~\pm~0.0$	$6.7~\pm 4.7$	$20.0~\pm~7.1$	$10.0~\pm~0.9$

Ablation Study

Model	Pickup Object	Reorient Object	Open Drawer	Close Drawer	Open Cabinet	Close Cabinet	Pour Water	Transfer Water	Overall
+Tiled Views	$75.0~\pm$ 7.1	6.7 ± 4.7	$33.3~\pm 2.4$	$28.3~\pm 6.2$	1.7 \pm 2.4	$20.0~\pm \text{ 4.1}$	15.0 ± 10.8	$18.3~\pm 6.2$	$24.8~\pm 0.3$
-Novel Object	58.3 ± 8.5	15.0 ± 7.1	1.7 \pm 2.4	$30.0~\pm~0.0$	0.0 ± 0.0	10.0 ± 4.1	$40.0~\pm 4.1$	6.7 ± 6.2	$20.2~\pm1.3$
-Novel Scene	$60.0~\pm$ 7.1	$15.0~\pm 10.8$	$45.0~\pm 7.1$	$21.7~\pm 6.2$	5.0 ± 4.1	5.0 ± 4.1	26.7 ± 6.2	1.7 \pm 2.4	$22.5~\pm 0.5$
-Novel State	$0.0~\pm~0.0$	$10.0~\pm 4.1$	$10.0~\pm 7.1$	$18.3~\pm 4.7$	1.7 \pm 2.4	1.7 \pm 2.4	1.7 \pm 2.4	$16.7~\pm~11.8$	$7.5~\pm 2.6$
-LLM	86.7 ± 2.4	5.0 ± 7.1	6.7 ± 4.7	33.3 ± 4.7	0.0 ± 0.0	6.7 ± 4.7	15.0 ± 0.0	6.7 ± 2.4	$20.0~\pm 1.5$
-Novel Object	68.3 ± 6.2	1.7 ± 2.4	6.7 ± 9.4	$40.0~\pm 4.1$	0.0 ± 0.0	3.3 ± 2.4	10.0 ± 4.1	8.3 ± 2.4	17.3 ± 1.6
-Novel Scene	71.7 ± 6.2	8.3 ± 6.2	18.3 ± 2.4	$21.7~\pm 8.5$	3.3 ± 2.4	$0.0~\pm$ 0.0	$15.0~\pm 4.1$	5.0 ± 4.1	$17.9~\pm3.3$
-Novel State	$0.0~\pm~0.0$	$0.0~\pm~0.0$	6.7 ± 2.4	$16.7~\pm 2.4$	$0.0~\pm~0.0$	1.7 \pm 2.4	3.3 ± 2.4	$10.0~\pm~4.1$	$4.8~\pm~0.8$
+Tiled Views -LLM	71.7 ± 10.3	1.7 \pm 2.4	13.3 ± 8.5	$16.7~\pm 4.7$	$0.0~\pm$ 0.0	8.3 ± 2.4	15.0 ± 8.2	10.0 ± 0.0	17.1 ± 3.4
-Novel Object	56.7 ± 8.5	8.3 ± 2.4	1.7 ± 2.4	16.7 ± 8.5	0.0 ± 0.0	1.7 ± 2.4	15.0 ± 4.1	6.7 ± 2.4	13.3 ± 1.6
-Novel Scene	$61.7~\pm 6.2$	5.0 ± 4.1	$20.0~\pm 4.1$	11.7 ± 6.2	$0.0~\pm$ 0.0	3.3 ± 4.7	$10.0~\pm~0.0$	10.0 ± 0.0	$15.2~\pm 1.2$
-Novel State	$0.0~\pm~0.0$	$6.7~\pm 2.4$	$10.0~\pm~0.0$	$30.0~\pm 4.1$	1.7 \pm 2.4	$0.0~\pm~0.0$	6.7 ± 6.2	3.3 ± 4.7	$7.3~\pm 0.8$
-Instruction to IG	71.7 ± 4.7	8.3 ± 2.4	$20.0~\pm~10.8$	40.0 ± 12.2	1.7 \pm 2.4	11.7 ± 9.4	5.0 ± 4.1	15.0 ± 4.1	21.7 ± 2.6
-Novel Object	66.7 ± 6.2	0.0 ± 0.0	1.7 ± 2.4	45.0 ± 4.1	0.0 ± 0.0	8.3 ± 2.4	$20.0~\pm 4.1$	1.7 ± 2.4	17.9 ± 0.8
-Novel Scene	$50.0~\pm 8.2$	$11.7~\pm 2.4$	$25.0~\pm 0.0$	26.7 ± 2.4	$10.0~\pm~0.0$	11.7 ± 2.4	13.3 ± 4.7	5.0 ± 4.1	$19.2~\pm 2.1$
-Novel State	$0.0\ \pm\ 0.0$	$3.3~\pm 4.7$	$8.3~\pm 6.2$	13.3 ± 8.5	$0.0~\pm$ 0.0	$0.0\ \pm\ 0.0$	1.7 \pm 2.4	8.3 ± 2.4	$4.4~\pm{\scriptstyle 1.8}$

Task1: lift the bottle thirty centimeters from the ground Task2: add forty percent of the liquid to the cup

Task3: pull the top dresser one hundred percent open

Task4: shut the cabinet half closed

Task: close the top dresser completely closed

Task: set the angle of the bottle forty-five degrees from the upward axis

Task: get seventy five percent water out of the glass

Task: pull the cabinet a quarter open

The Computing Stack Physical Al

Motion Generation Models

Natural Interaction Interface Ease of Use

App

OS

Driver

Fine-Tune Generalists for better Specialists.

Reinforcement Learning for Locomotion, WBC + Dexterity

Self-supervised learning without rewards

Platform-Agnostic Planning Modular Tool-Use

Hardware-Specific Skills Optimize for Morphology

Act-AIM

Discovering Robotic Interaction Modes with Discrete Representation Learning

Liquan Wang, Ankit Goyal, Haoping Xu, Animesh Garg

Self-Supervised Learning

Learning to do "what can be done" Learning from Self-Supervised Play

Transferring to Real world Learning without data or rewards

Learning without Supervision

Unsupervised Discovery of Interaction Modes Different Types of Motions (Revolute, Prismatic, ...) Variable Number of Links

Learning without Supervision

No Ground Truth Articulation DoF

No Ground Truth Part Segmentation

Self-Supervised Data Collection

Self-Supervised Data Collection

Model Training: ActAIM-2

SPIRE

Synergistic Planning, Imitation, and Reinforcement for Long-Horizon Manipulation

Zihan Wang, Ajay Mandlekar, Caelan Garrett, Animesh Garg

Overview

SPIRE Solves Long-Horizon Tasks (5 Sequential Subtasks)

* Red border indicates SPIRE agent-controlled sections

SPIRE: Train proficient agents using a handful of data

Episode Duration:	BC [14]	RL [15]	Ours
Square	18.1	8.3	11.6
Square Broad	24.5	8.4	13.6
Coffee	63.1	15.0	38.4
Coffee Broad	80.6	25.7	61.3
Coffee Preparation	193.3	-	168.5
Three Piece	58.7	-	34.0
Three Piece Broad	62.2	-	38.1
Tool Hang	81.8	-	61.7
Tool Hang Broad	130.5	-	109.8

SPIRE reaches 80% in 8/9 tasks, BC and RL have 3/9.

SPIRE completes tasks in 60% of the time of BC agents.

PWM

Policy Learning with Multi-Task World Models

Ignat Georgiev, Varun Giridhar, Nicklas Hansen, Animesh Garg

How to learn many things (better than data)

PWM: Policy Learning with Large World Models

World Model Framework

A scalable multi-task world model approach

World models are smooth surrogates

- When regularized correctly, world models can act as smooth surrogates
 - No sampling required!
- Maps z into V L-dimensional simplices

 $\operatorname{SimNorm}(\boldsymbol{z}) := [\boldsymbol{g}_1, ..., \boldsymbol{g}_L], \quad \boldsymbol{g}_i = \operatorname{Softmax}(\boldsymbol{z}_{i:i+V})$

- The key is not to make models accurate
 - But to make them smooth
 - And have a low optimality gap

Model	Model	Opt.
	error	gap
True	0.0	16.850
ReLU	0.707	16.046
SimNorm	1.131	3.473

(c) Model error and optimality gap.

Regularized large models enable efficient policy learning
Use First-order optimization to train policies in <10m per task

High-dimensional single-task

Takeaway: optimizing over surrogate models obtains better policies than ground truth!

Multi-task experiments

Beats TDMPC2 without the need for online planning -> more scalable

Matches single-task experts without any online interaction

PWM learns over 80 tasks

2011년 2012년 2012년 2012년 2011년 201

Generative AI to Enable Robotics

Innovations in better Models and larger datasets

Generalizable Autonomy

Representations for Embodied FMs

Animesh Garg

Professor of AI Robotics Georgia Tech

animesh.garg@gatech.edu @animesh_garg

