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Generalizable Autonomy

1950s 
“AI” The Dartmouth AI Project



Generalizable Autonomy

1950s 
“AI” 1968: Aspirational Robotic Assistant



Generalizable Autonomy

1950s 
“AI”

1960s 
Robots

2013 
Walking

2019 
Cooking

2024 
Humanoids

Astribot Demo



The Computing Stack
Digital AI

Hardware-Specific Drivers
Optimize Performance

Platform-Agnostic OS
Modular Utilities

General-Purpose Applications
Ease of Use

D
riv
er

O
S

Ap
p



The Computing Stack
Digital AI

Hardware-Specific Drivers
Optimize Performance

Platform-Agnostic OS
Modular Utilities

General-Purpose Applications
Ease of Use

D
riv
er

O
S

Ap
p

Hardware-Specific Skills
Optimize for Morphology

Platform-Agnostic Planning
Modular Tool-Use

Natural Interaction Interface
Ease of Use

D
riv
er

O
S

Ap
p

Physical AI



Hardware-Specific Skills
Optimize for Morphology

Platform-Agnostic Planning
Modular Tool-Use

Natural Interaction Interface
Ease of Use

The Computing Stack
Physical AI

D
riv
er

O
S

Ap
p



Hardware-Specific Skills
Optimize for Morphology

Platform-Agnostic Planning
Modular Tool-Use

Natural Interaction Interface
Ease of Use

The Computing Stack
Physical AI

Internet Data
Language, Image, Video
$, Very Diverse

Synthetic Data
Simulation
$$, Engineered Designs

Real World Data
Teleoperation
$$$$, Limited Diversity
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The Computing Stack
Physical AI

Planning with LLMs

Learning Planning Domains

Using Agentic Frameworks with 
Verifiers for correctness

Automated Iterative completion 
of Domain Specification Hardware-Specific Skills

Optimize for Morphology

Platform-Agnostic Planning
Modular Tool-Use

Natural Interaction Interface
Ease of Use
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Walker Byrnes, Miroslav Bogdanovic, Avi Balakirsky, Stephen Balakirsky, Animesh Garg

CLIMB
Language-Guided Continual Learning for Task Planning 
with Iterative Model Building



Given a domain description and task in 
natural language, learn a world model which 
represents domain state constraints through 
autonomous interaction with environment
Inputs:
• Domain Description
• Logical Action set
• Tasks to complete
Outputs:
• World representation encoding task 

requirements
• Completed tasks in curriculum

CLIMB Objectives



Prior Efforts
• InterPreT grounds language instructions in Problem Domain Definition Language (PDDL)

• Relies on human input for corrective actions

• Plan-Seq-Learn
• Learns atomic skills to accomplish dexterous actions, sequenced with classical task planner







Experiments
Three levels of fidelity: logical, simulated, and real



Results – Logical Domain

• Compared to naïve LLM prompt 
based planning, CLIMB’s planning 
structure increases 0-shot 
performance for some classes of 
problems
• With few-shot (N=5) re-prompting 

we can match or improve 
performance in all evaluated cases
• Reliant on accurate predicate 

grounding, which can be mitigated 
with few-shot syntax and semantic 
corrections



Pyramid Stacking2D ArrangementBasic Stacking

15x 15x

10x10x35x

30x



Results
Logical BlocksWorld Dataset

• Leveraging data from past 
instances improves overall success 
and reduces total rollouts required

• Once CLIMB obtains a complete 
domain, it can solve new problems 
zero-shot



Results

• Evaluation on curriculum of 
increasing complexity tasks
• CLIMB demonstrates 

understanding and incorporation 
of new world constraints and 
predicates with fewer rollouts 
than baseline





The Computing Stack
Physical AI

Large Behavior Models

Large Scale Imitation Learning

Learned Task Planning and 
replanning Behavior

Fine-Tune Generalists for better 
Specialists using RL Hardware-Specific Skills

Optimize for Morphology

Platform-Agnostic Planning
Modular Tool-Use

Natural Interaction Interface
Ease of Use
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Policy Learning from Offline Datasets

+

Data Collection Data Buffer

Deployment 
EnvironmentAgent

State

Action

Reward

Policy 
Deployment

Fixed

Offline Policy 
Learning

Learning without 
Interaction



Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen, Animesh Garg

QUEST
Self-Supervised Skill Abstractions for Learning Continuous 
Control



Skill Manifold

Reaching

Lifting

Closing

Opening



Multi-task Learning: QUEST

42 87 1212 56 91 67 08 62 69 94 37

"Reaching the pan" "Lifting the pan" "Placing the pan"



Multi-Task Behavior Cloning
Latent Variable Models

QueST: Self-Supervised Skill Abstractions for Continuous Control



Multi-task Learning: QUEST

Multitask-IL LIBERO-90 

Multitask IL: Relative improvement of 10.3% over next best baseline



Multitask-IL LIBERO-90 5-shot IL LIBERO-LONG

Multitask IL: Relative improvement of 10.3% over next best baseline

5-shot IL: Relative improvement of 24% over next best baseline

Multi-Task Behavior Cloning
Latent Variable Models



Albert Wilcox, Mohamed Ghanem, Masoud Moghani

Adapt3R
Unified 3D Scene Representation for Domain Transfer in 
Imitation Learning



Motivation

● Robotics data is notoriously expensive, 
● Collecting enough data to cover the full space of robotics deployment settings 

(all variations in scene, robot, etc) is proving to challenging

Generalization is often bounded
Change of robot embodiment
Change of camera pose

Image from GELLO Wu et al 2024



Prior Work - SE(3) Equivariance

● SE(3) equivariance (pink and 
place): NDFs, TaxPose, KeyPoint-
ViL, RiEMann, etc

● EquivAct, EquiBot / Equivariant 
diffusion policy 

● Difficult to scale to settings with 
several objects

● Completely incompatible with 
modern BC methods



Prior Work - 3D Diffusion Policy / iDP3

● 3D Diffusion Policy (DP3) and 
Improved 3D Diffusion Policy (iDP3) 
use colorless point clouds as a scene 
representation

● 3D Diffuser Actor lifts CLIP

● Omit semantic information or too slow 
to train and test

● Generalization to new camera poses is 
limited



Challenges

● DP3 uses a colorless point cloud and PointNet
● 3D diffuser actor cross attends between scene tokens and noised trajectory tokens
● GenDP requires hand-selected reference features



Adapt3R Overview

● Lift CLIP encodings into a 3D semantic point cloud
● Use attention pooling over the cloud to extract a single conditioning vector
● Use that vector as input for an arbitrary policy and train end-to-end



Adapt3R Overview

1. Convert to End-Effector Frame
Transform the point cloud from the robot 
base coordinate frame to the end effector's 
coordinate frame

2. Object Centric Foreground cropping
Remove points far behind the end effector

3. CLIP-based down-sampling 
instead of Point Cloud based sub-sampling

4. Positional embedding for PC
Transform the point cloud from from XYZ to 
sinusoidal positional encoding



Experiments - Multitask IL

Drop-in replacement for BC methods!

● Adapt3R achieves similar or better performance 
compared to baselines in all settings

● Notably, we achieve SOTA results on the LIBERO-
90 benchmark



Experiments  
Robot Change

● We train only on the Franka Panda

● evaluate zero-shot on

○ UR5e

○ Kinova3

○ Kuka IIWA

● Adapt3R shows a strong improvement 
compared to most baselines in this experiment



Experiments  
Camera Pose Change

● We train only on the one camera pose

● evaluate zero-shot on new camera 
poses

● Adapt3R shows a strong performance 
preservation across camera poses



Experiments  
Camera Pose Change

● We train only on the UR5

● evaluate zero-shot on new poses

● Adapt3R shows a strong robustness



Yuchi(Allan) Zhao, Miroslav Bogdanovic, Chengyuan Luo, Steven Tohme, Kourosh Darvish, 
Alán Aspuru-Guzik, Florian Shkurti, Animesh Garg

AnyPlace
Learning Generalized Object Placement for Robot 
Manipulation



StackingHangingInserting



Existing approaches are:
Task-specific

Limited generalization
Predict a single solution



How to enable robots to place objects in 
a generalizable and robust manner?AnyPlace



High-level Placement Location Prediction
Generate point clouds

Local placement region

Low-level Placement 
Pose Prediction

AnyPlaceArchitecture

“Put the vial
into the vial 

rack”

Language

RGBD Image

Local pose-prediction model

Language-conditioned segmentation

SAM-2

Molmo

Detect candidate placement location

Molmo

Zhao, Bogdanovic, Luo, Tohme, Darvish, Aspuru-Guzik, Shkurti, Garg. AnyPlace: Learning Generalized Object Placement for Robot Manipulation (2025)



AnyPlace
Synthetic Dataset Generation

1,489 Objects
5,370 Placement

Zhao, Bogdanovic, Luo, Tohme, Darvish, Aspuru-Guzik, Shkurti, Garg. AnyPlace: Learning Generalized Object Placement for Robot Manipulation (2025)



9x speed



Insert vials into different holes on the vial plate



9x speed



“Place the bottle in the drawer”” “Place the bottle on the middle shelf”” “Place the bottle on the top shelf””

9x speed 9x speed 9x speed



Ishika Singh, Ankit Goyal, Stan Birchfield, Dieter Fox, Animesh Garg, Valts Blukis

OG-VLA
3D-Aware Vision Language Action Model via 
Orthographic Image Generation



Problem Statement

Media source: Arnold, ICCV 2023



Unseen language instructions

Generalization

Novel environments

Novel objects

Media source: Arnold, ICCV 2023



Prior Works struggle with Generalization

Why? They are trained from scratch and overfit to their training data

Multi-Task Peract 
average across all Arnold 

benchmark tasks

Novel Object
Novel Scene
Novel State/Instr

ARNOLD COLOSSEUM



What about VLAs?

Most use 2D single-view input.

Output space is actions vectors 
expressed as text tokens.

Not very efficient for learning 
tasks that are inherently 3D.

Perhaps we can leverage built-
in priors used in 3D BC 
methods like RVT or Act3D for 
learning VLAs?

3D VLA



Our approach: OG-VLA

pull the top drawer 50% openTask
Front Top

Left Right

x-axis
Rotation

z-axis
Rotation

y-axis
Rotation

3D 
Translation

Generating actions on orthographic views
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Results: Eval on Arnold (3D-manipulation)



Ablation Study



Task1: lift the bottle thirty centimeters from the ground Task2: add forty percent of the liquid to the cup Task4: shut the  cabinet half closedTask3: pull the top dresser one hundred percent open

T=1 T=2 T=1 T=2 T=1 T=2 T=1 T=2



Task: close the top dresser completely closed Task: set the angle of the bottle forty-five 
degrees from the upward axis

Task: get seventy five percent water out of the glass Task:  pull the  cabinet  a quarter open 

T=1 T=2 T=1 T=2 T=1 T=2 T=1 T=2



Hardware-Specific Skills
Optimize for Morphology

Platform-Agnostic Planning
Modular Tool-Use

Natural Interaction Interface
Ease of Use

The Computing Stack
Physical AI

Motion Generation 
Models

Fine-Tune Generalists for better 
Specialists. 

Reinforcement Learning for 
Locomotion, WBC + Dexterity

Self-supervised learning 
without rewards
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Liquan Wang, Ankit Goyal, Haoping Xu, Animesh Garg

Act-AIM
Discovering Robotic Interaction Modes with Discrete 
Representation Learning



Self-Supervised Learning

Learning to do “what can be done”
Learning from Self-Supervised Play

Transferring to Real world
Learning without data or rewards



Learning without Supervision

Unsupervised Discovery of Interaction Modes

Variable Number of Links
Different Types of Motions (Revolute, Prismatic, …)



Learning without Supervision

No Ground Truth 
Articulation DoF

Visual Input 
Object Depth

No Ground Truth
Part Segmentation



Self-Supervised Data Collection



Interaction Modes
Close Middle Open Right No Semantic Change

Close Right

Close Left

Encoder

Self-Supervised Data Collection

Wang et al. ICRA 2023



Model Training: ActAIM-2

Action Predictor Output: 
Proposed Actions

Point Score Prediction: 
Interaction Distribution

Wang et al. CORL







Zihan Wang, Ajay Mandlekar, Caelan Garrett, Animesh Garg

SPIRE
Synergistic Planning, Imitation, and Reinforcement for 
Long-Horizon Manipulation



Section 1 Section 2 Section 3 Section 4

Tele-op | BC

RL fine-tune
BC Policy

RL Policy KL

TAMP

Section 1 Section 2 Section 3 Section 4

Task

Coffee
Preparation

Overview



SPIRE Solves Long-Horizon Tasks (5 Sequential Subtasks)

* Red border indicates SPIRE agent-controlled sections



SPIRE: Train proficient agents using a handful of data

SPIRE reaches 80% in 8/9 
tasks, BC and RL have 3/9.

SPIRE completes tasks in 60% 
of the time of BC agents.



Ignat Georgiev, Varun Giridhar, Nicklas Hansen, Animesh Garg

PWM
Policy Learning with Multi-Task World Models



Large World 
Models Multi-task

Efficient Policy 
Optimization

How to learn many things 
(better than data)



World Model Framework

Environment

World Model



• First multi-task RL policy that 
scales to 80 different tasks
• Across MetaWorld and DMC
• Relies mostly on online 

planning
• Lots of engineering tricks to 

enable scalability to 317M 
params

Turns out that TDMPC2 world models are good smooth surrogates

But TDMPC2 choses to use ZoG, what if we use FoG?

TDMPC2
A scalable multi-task world model approach

https://www.tdmpc2.com/


World models are smooth surrogates

• When regularized correctly, world models 
can act as smooth surrogates
• No sampling required!

• Maps 𝑧 into 𝑉 𝐿-dimensional simplices

• The key is not to make models accurate
• But to make them smooth
• And have a low optimality gap



1. Regularized large models enable efficient policy learning
2.Use First-order optimization to train policies in <10m per task



High-dimensional single-task

Takeaway: optimizing over surrogate models obtains better policies than ground truth!



Multi-task experiments

Beats TDMPC2 without the need for online planning -> more scalable

Matches single-task experts without any online interaction



PWM learns over 80 tasks



Generalizable Autonomy

Structure Data

Generative AI to Enable Robotics

Innovations in better Models and larger datasets
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